
Math 144 Lecture Notes 11-10-09

1. Discussion Problems

Problem 1. Show, using the well-ordering of N and definition by induction, that if
X is an infinite set, there is a 1− 1 map from X into itself which is not onto.

Proof. Take any element of X and pair it with 1 and call it x1, take a second
element of X and pair it with 2 and call it x2. Continue this process and you will,
since X is infinite, associate to each element of N an element of X. By doing this
we are creating a bijection from a subset A = {xi|i ∈ N} with N in its well-ordering,
thus A is well-ordered. Define a map f : A→ A by:

f(xn) = x2n

then clearly f is 1− 1 and is not onto as xn where n is odd is not in the image of
f . Now extend f to a 1− 1 function f̃ on X by:

f̃(x) =

{
f(x) x ∈ A
x x /∈ A

Then f̃ is 1− 1 but not onto.
�

Problem 2. Prove that if X is a set, then there cannot be a map from X onto ℘(X).

Proof. Assume ∃ f : X → ℘(X) which is onto. Thus to any element a ∈ A there is
an associated f(a) (f(a) ⊂ A). Now we have two possibilities: a ∈ f(a) or a /∈ f(a).
Let B be the subset of A consisting of all a such that a /∈ f(a). Like any subset
of A, B = f(a) for some a ∈ A. Suppose ∃ b ∈ A such that f(b) = B. Then the
question is: Does b lie in B? If b ∈ B, by the definition of B, b /∈ f(b), which is not
possible. Thus b /∈ B. But again this is a problem because, by the definition of B,
b ∈ f(b), which is again a contradiction. Thus there can exist no map from X onto
℘(X). �

2. Cardinal Arithmetic [1]

2.1. Countability. A countable set is a set that has a bijection with the natural
numbers. An uncountable set is an infinite set that is not countable.

2.2. Cardinal Numbers. Write A ∼ B if there is a bijection between A and B.
This is clearly an equivalence relation on sets (Exercise: prove it!). Thus there
is a partition generated by this equivalence relation. Assign to each equivalence
class a number called a cardinal number. By this definition, two sets have the same
cardinal number if there is a bijection between them (i.e. card(A) = card(B)). We
can think of a cardinal number, n, as being the number of elements in the set which
has cardinal number n. Thus you might be tempted to say card(N) = ∞. This is
wrong, however because in this same way you would end up with card(R) =∞, and,
as we have shown, there is no bijection between N and R. We define card(N) := ℵ0.
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For now, call card(R) = c. We can define higher cardinal numbers, but will do that
later.

Definition 1. Let d and e be cardinal numbers. Let D and E be sets with card(D) =
d and card(E) = e. We say that d ≤ e if there exists a one-to-one function from
D into E. We say d < e if d ≤ e and d 6= e.

Theorem 1. (Cardinality of the Power Set) Let D be a set with card(D) = d.
Then card(℘(D)) = 2d.

Theorem 2. (Schröder-Bernstein) Let A and B be sets such that there exists a
one-to-one map of A into B and a one-to-one map of B into A. Then there exists
a bijection between A and B.

2.3. Cardinal Addition. Let d and e be cardinal numbers. To define d + e we
take disjoint sets D and E with cardinalities d and e respectively. Then we define
d + e := card(D ∪ E).

Theorem 3. Let d and e be the cardinal numbers of the sets D and E respectively.
Suppose d ≤ e, d 6= 0, and e infinite. Then d + e = e.

2.4. Cardinal Multiplication. Let d and e be cardinal numbers. Let D and E
be sets with cardinalities d and e respectively. Then define de := card(D × E).

Theorem 4. Let d and e be the cardinal numbers of the sets D and E respectively.
Suppose d ≤ e, d 6= 0, and e infinite. Then de = e.

2.5. Cardinal Exponentiation. Let d and e be nonzero cardinal numbers. Let D
and E be sets with cardinalities d and e respectively. Then define de := card(DE)
where DE is the set of all function from E into D.

Theorem 5. (Cardinality of R) Using this definition of cardinal exponentiation,
and the fact that there is a bijection between R and 2N (i.e. card(R) = card(2N))
we can define the cardinality of R by card(R) = card(2N) = 2ℵ0 = c, where we view
2 as {0, 1}.

Property 1. (Cardinal Exponentiation) Let d1, d2, d, e1, e2, e, and f be cardinal
numbers. Then:

(1) (d1d2)e = de1d
e
2

(2) de1+e2 = de1de2

(3) (de)f = def

3. Infinite Cardinal Numbers [1]

We can list the well-ordered set of infinite cardinal numbers as follows

ℵ0,ℵ1,ℵ2, ...,ℵn, ...
Where does 2ℵ0 = c fit into this list? We can write the complete well-ordered set
of cardinal numbers:

0, 1, 2, 3, ..., n, ...,ℵ0,ℵ1,ℵ2,ℵ3, ...,ℵn, ...,ℵω,ℵω+1, ...

Definition 2. A limit cardinal is a cardinal number that has no immediate prede-
cesor.

The first limit cardinal is ℵ0, the second is ℵω, the third is ℵ2ω, and so on...
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4. The Continuum Hypothesis [1]

Consider the well ordered sequence of infinite cardinals

ℵ0,ℵ1,ℵ2, ...
Where does c = 2ℵ0 fit into this sequence? Since ℵ0 corresponds to a countable set,
we know that c ≥ ℵ1.

Conjecture 1. (Continuum Hypothesis) 2ℵ0 = ℵ1
Conjecture 2. (Generalized Continuum Hypothesis) 2ℵn = ℵn+1

Remark 1. An interesting thing to note is that it was proved by Gödel in 1938
that the Continuum Hypothesis is unable to be disproved, then in 1963 Cohen proved
that it cannot be proved. So, as it stands, the Continuum Hypothesis is undecidable
on the basis of the current axioms for set theory.

In practice we assume the Continuum Hypothesis because it makes cardinal
arithmetic much easier and it seems consistant with what we expect.
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